(x*(1.085^25))+x=115301

Simple and best practice solution for (x*(1.085^25))+x=115301 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x*(1.085^25))+x=115301 equation:



(x(1.085^25))+x=115301
We move all terms to the left:
(x(1.085^25))+x-(115301)=0
We add all the numbers together, and all the variables
x+(x(1.085^25))-115301=0
We calculate terms in parentheses: +(x(1.085^25)), so:
x(1.085^25)
We multiply parentheses
x^2
Back to the equation:
+(x^2)
determiningTheFunctionDomain x^2+x-115301=0
a = 1; b = 1; c = -115301;
Δ = b2-4ac
Δ = 12-4·1·(-115301)
Δ = 461205
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{461205}=\sqrt{9*51245}=\sqrt{9}*\sqrt{51245}=3\sqrt{51245}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3\sqrt{51245}}{2*1}=\frac{-1-3\sqrt{51245}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3\sqrt{51245}}{2*1}=\frac{-1+3\sqrt{51245}}{2} $

See similar equations:

| -3.5(x+4)+4.5x=2(x-6.5) | | (6x-1)/(3-2x)=5 | | x2+2x-1720=0 | | x+(x*1.085^25)=115301 | | x*(x*1.085^25)=115301 | | 8-2x=4x-@4 | | x=0.25+x | | (25-2x)(40-2x)(x)=0 | | 1.57*10-9=(0.02+s)*(2s)2 | | (0.1)x=(0.2)5 | | 42=x+28 | | (2x+3)/(x+1)=5/3 | | 9x+12-3x=18 | | x=(0.02+x)(2x) | | 8*x=-20 | | 7⋅(x−14)=−42 | | -5m+40=20 | | 3*9+2y=27 | | 20=3/1-s | | 3(x+1)-5(x+2)÷3=-5 | | 5x^2-10x=1 | | 7x=140/2 | | y=(2)21 | | 6x-1=15x+2x | | F(t)=10 | | -5=1/3x+1 | | 1/8+1/8x=5 | | -1.5x-3=0.2x+6 | | -1.5x-3=0.2x+6, | | 4*(2-x)=-12 | | 30w-15=5 | | 6(p-1)=-18 |

Equations solver categories